The Subgroup Normalizer Problem for Integral Group Rings of Some Nilpotent and Metacyclic Groups
نویسندگان
چکیده
منابع مشابه
Central Units of Integral Group Rings of Nilpotent Groups
In this paper a finite set of generators is given for a subgroup of finite index in the group of central units of the integral group ring of a finitely generated nilpotent group. In this paper we construct explicitly a finite set of generators for a subgroup of finite index in the centre Z(U(ZG)) of the unit group U(ZG) of the integral group ring ZG of a finitely generated nilpotent group G. Ri...
متن کاملSubgroup Isomorphism Problem for Units of Integral Group Rings
The Subgroup Isomorphism Problem for Integral Group Rings asks for which finite groups U it is true that if U is isomorphic to a subgroup of V(ZG), the group of normalized units of the integral group ring of the finite group G, it must be isomorphic to a subgroup of G. The smallest groups known not to satisfy this property are the counterexamples to the Isomorphism Problem constructed by M. Her...
متن کاملTwisted Group Rings of Metacyclic Groups
Given a finite metacyclic group G, a central extension F having the projective lifting property over all fields is constructed. This extension and its group rings are used to investigate the faithful irreducible projective representations of G and the fields over which they can be realized. A full description of the finite metacyclic groups having central simple twisted group rings over fields ...
متن کاملKimmerle’s Conjecture for Integral Group Rings of Some Alternating Groups
Using the Luthar–Passi method and results of Hertweck, we study the long-standing conjecture of Zassenhaus for integral group rings of alternating groups An, n ≤ 8. As a consequence of our results, we confirm the Kimmerle’s conjecture about prime graphs for those groups.
متن کاملthe prime graph conjecture for integral group rings of some alternatings groups
we investigate the classical h.~zassenhaus conjecture for integral group rings of alternating groups $a_9$ and $a_{10}$ of degree $9$ and $10$, respectively. as a consequence of our previous results we confirm the prime graph conjecture for integral group rings of $a_n$ for all $n leq 10$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2016
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2015.1087549